Observemos estos dos coches con luces cruzadas. Como vemos, las luces intersectan pero no interaccionan entre ellas, es como si fueran fantasmas que pueden cruzarse sin enterarse que se están cruzando. En efecto, la luz que va de derecha a izquierda no se inmuta ante el choque con la luz que va de abajo a arriba, si es que en realidad no hay choque porque los fantasmas nunca chocan, son imperturbables.
Ahora observemos cómo la materia sí choca con la materia. Y tanto, si no que se lo digan a nuestro Rafa Nadal:
"Dos fermiones no pueden ocupar el mismo estado cuántico"
Ya me imagino las muchas veces que nuestro genial Pauli de carne y hueso tuvo que chocar con algún que otro otro viandante por la calle mientras andaba absorto en sus pensamientos, de ahí tal vez su importantísimo descubrimiento a base de choques con la vida.
Y para acabar con el carácter de la luz, ¿puede la luz interaccionar o chocar con la materia? Por supuesto que sí, si no que se lo digan a los dermatólogos que día sí y día también tratan de curar las heridas de la piel provocadas por la exposición prolongada al sol de confiados e irresponsables turistas en la playa. Dicho esto, recomiendo encarecidamente evitar la playa en las horas punta de sol como bien recomiendan los dermatólogos y dermatólogas.
Aparte de lo ya mencionado, y aunque haya quedado medianamente claro, no está de más poner una foto demostrativa de que la luz sí interacciona con la materia, o si no que se lo digan a un profesional de la fototerapia como el de la siguiente fotografía:
Entonces la luz interacciona con la materia pero no con la luz, y luz con luz ni en los mejores sueños (la luz sólo interacciona con la materia). Así que la luz es un bosón que no interaccionan ni choca con otro bosón para que así, por decirlo de algún modo poético, puedan coincidir en un mismo estado cuántico, pero sí que interacciona con un fermión. Entonces tenemos un bosón, el primero de la historia en ser descubierto, que no interacciona con bosones (al menos hasta el descubrimiento de nuevos bosones como por ejemplo gluones o bosones W Z los cuales merecen un estudio aparte) pero sí interacciona con fermiones.
y ya puestos, si un bosón interacciona con un fermión, no será eso el mensaje de que algo bueno o malo pasará al fermión? Por ejemplo, si estoy dormido en la playa y noto mi cuerpo caliente, ¿no es el sol que con su luz me está lanzando el mensaje de que tenga cuidado no vaya a ser que sufra una insalubre insolación? En efecto, yo soy fermión porque tengo masa a modo de átomos, el Sol también es un fermión porque es materia incandescente, pero la luz fotónica del Sol es el mensaje de precaución. Así que los fermiones se comunican con bosones (y el fotón es un bosón)..
Todo esto me recuerda a la tendencia en física moderna de particularizar (nunca mejor dicho) los campos a partículas mensajeras o portadoras del campo. Esto es, en los albores de la física se popularizó el concepto de fuerza o interacción instantánea entre cuerpos distantes, pero luego tuvo que venir Faraday y compañía para decir que en realidad los cuerpos no interaccionan a distancia sino que más bien perturban el espacio circundante para así el que caiga dentro de ese espacio sufra la interacción. Esto es, tuvo que venir Faraday y compañía para decir que la interacción a distancia no existe sino que lo que existe es la interacción local de un cuerpo con su propio entorno o campo e incluso con el campo o entorno de otro cuerpo cercano. Y ya, mucho después de Faraday, esto es en la actualidad, se acepta el concepto de que no existe tales campos o regiones enrarecidas creados por unos cuerpos para atrapar a otros a modo de red de pescar sino mas bien lo que hay son partículas mensajeras que un cuerpo lanza a otro para comunicarle la interacción. O sea, en la actualidad se ha obviado el concepto de campo o red de pescar para aceptar el concepto de partícula mensajera. Así que, no es que el Sol caliente su entorno para yo sentir el calor de su entorno, es más bien que el Sol me lanza fotones mensajeros portadores de calor. Así que, al igual que la historia de la humanidad se puede resumir a la sabia Roma y Grecia - luego a la oscura Edad Media - para luego volver al renacimiento, la historia de la física también se puede resumir a las primitivas y sabias partículas distantes e interactuantes de forma instantánea-luego al oscuro concepto de campo o tela de araña creado por una partícula esperando a lo que caiga por su alrededor-para finalmente volver al romanticismos de las partículas que se lanzan cartas de amor en un tal día como hoy, que por cierto es San Valentín. No sientes el amor o atracción en el aire, lo sientes en la carta.
Así que mi regalo de San Valentín es lanzaros bosones con el mensaje de ir a la playa con precaución y evitando las horas punta!!
Y ya para acabar, deciros cuántos bosones hay en la actualidad. Son éstos:
- Fotones: Partículas portadoras de la interacción electromagnética (recordar que la luz es precisamente radiación electromagnética). Fueron los primeros bosones en ser descubiertos.
- Gluones: Partículas portadoras de la interacción nuclear fuerte, esto es, la interacción más fuerte y poderosa conocida hasta hoy.
- Bosones W y Z: Partículas mediadoras de la interacción nuclear débil, la cual es la responsable de procesos de desintegración radiactiva existentes en la naturaleza sin que tenga que intervenir el ser humano.
- Bosón de Higgs: A mi pareces el más raro conceptualmente hablando y el último en ser descubierto. Digamos que lo que antes era el Campo de Higgs, ahora es el bosón de Higgs. El campo de Higgs era un espacio que impregnaba de masa a las partículas que circundaran en él. Por tanto, digamos que el bosón de Higgs es una partícula mensajera portadora de masa. Así que si quieres ser un fantasma inmaterial, evita que te lleguen bosones de Higgs.
- Y para acabar, el bosón que todavía no ha sido encontrado, el que pretende sustituir al campo gravitatorio de cualquier estrella o planeta, hablamos del bosón mensajero o portador de la gravedad, el Gravitón.